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ABSTRACT: This paper discusses the formalization of the binary number system and the 

groundwork that was laid for the future of digital circuitry, computers, and the field of computer 

science. The goal of this paper is to show how Gottfried Leibniz formalized the binary number 

system and solidified his thoughts through an analysis of the Chinese I Ching. In addition, Leib-

niz’s work in logic and with computing machines is presented. This work laid the foundation for 

Boolean algebra and digital circuitry which was continued by George Boole, Augustus De Mor-

gan, and Claude Shannon in the centuries following. Some have coined Leibniz the world’s first 

computer scientist, and this paper will attempt to demonstrate a validation of this conjecture. 
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1 Introduction 

The binary number system is one of the most influential developments in the history of technol-

ogy. The formalization of the system and its additions and refinements over the course of 200+ 

years ultimately led to the creation of electronic circuitry constructed using logic gates. This cre-

ation ushered in the technological era and left the world forever changed. Important figures in the 

history of the binary number system and mathematical logic and less directly the history of com-

puters and computer science include Gottfried Leibniz, George Boole, Augustus De Morgan and 

Claude Shannon. This paper focuses on Leibniz’s formalization of the binary system and his 

work in mathematical logic and computing machines. 

2 Numeric Systems 

In the most general sense, a number is an object used to count, label, and measure (Nechaev, 

2013). In turn, a numeral or number system is a system for expressing numbers in writing. In the 

history of mathematics, many different number systems have been developed and used in prac-

tice. The most common system currently in use is the Hindu-Arabic numeral system, which was 

developed between the 1st and 4th centuries and later spread to the western world during the Mid-

dle Ages (Smith & Karpinski, 1911). The Hindu-Arabic system is based on ten different symbols 

and is considered to be a base 10 system. Numeral systems with different bases have found use 

in applications where a different base provides certain advantages. 

 Other numeral systems currently in use include the duodecimal system (base 12), hexa-

decimal system (base 16), and binary system (base 2). The duodecimal system uses the standard 

ten digits of the decimal system (0-9) and additionally represents ten as ‘A’ and eleven as ‘B’. 

The duodecimal system is useful because of its divisibility by 2, 3, 4, and 6. This allows the 
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common fractions 1
2� , 1

3� , 2
3� , 1

4� , 3
4�  to be represented by the decimal equivalents of 0.6, 0.4, 

0.8, 0.3 and 0.9 without repeating digits. Some have proposed the duodecimal system as superior 

to the base 10 decimal system (Dvorsky, 2013). 

The hexadecimal system adds the additional symbols of the letters A-F to the standard 

decimal system symbols. Hexadecimal numbers are often used in computer programming envi-

ronments to represent things such as URIs and color references. Hexadecimal numbers are useful 

in computer contexts because of their easy conversion to binary numbers, while providing a 

shorter written representation. For example, the color red can be represented in hexadecimal as 

FF0000 with each pair of digits representing the amount of each primary color red, blue, and 

green (RGB). The equivalent numeral in decimal would be 16711680 and in binary 1111 1111 

0000 0000 0000 0000. The binary number system is represented by only two symbols, 0 and 1. 

Nearly all computers use the binary numeral system which maps directly to the OFF and ON 

conditions of an electrical switch.  

3 I Ching 

The I Ching, commonly known as The Classic of Changes or Book of Changes, is one of the old-

est Chinese texts dating to the 3rd century BCE (Smith R. J., 2012). Many consider the origins of 

the I Ching to come from before the time of written history. Traditional Chinese belief was that 

the I Ching was supernaturally revealed to the mythical Chinese Emperor Fu Xi (Bi & Lynn, 

1994). The I Ching incorporates the Chinese philosophy concept of Yin-Yang (Huang, 1987). 

The concept describes the interconnection between forces in our world and is central to many 

classical Chinese scientific and philosophical ideas (Osgood & Richards, 1973). In the simplest 

sense, Yin represents dark and Yang represents light. Yin and Yang are thought to be comple-
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mentary to each other rather than opposing. Yin-Yang is often represented with the Taijitu sym-

bol, portraying the accompanying contrast and interconnection between the two forces. 

 

Figure 1: Yin-Yang represented through the Taijitu symbol (Yin and Yang, 2007) 

 Historically, the primary use of the I Ching has been as a divination text (Huang, 1987). 

Merriam-Webster dictionary describes divination as “the practice of using signs (such as an ar-

rangement of tea leaves or cards) or special powers to predict the future” (Divination, 2014). By 

generating the symbols contained within the text, an attempt to interpret life and predict future 

events can be gleaned by the reader. Though its source is seeded in divination, the moral code 

present throughout the I Ching has been referenced and applied in a variety of ways throughout 

Chinese history (Huang, 1987). 

Trigrams and Hexagrams 

The I Ching represents Yin-Yang through the use of trigrams and in later versions of the text, 

hexagrams. In these representations, a solid line represents Yang and an open line represents 

Yin. The early version of the I Ching presents 23 = 8 trigrams, which is the possible combina-

tions of three rows of lines representing Yin or Yang. Each one of these trigrams represents a 

sort of parable or concept. Figure 2 shows the eight trigrams with their accompanying interpreta-

tions and Chinese symbol. 
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Figure 2: I Ching Trigrams (Trigrams, 2007) 

In order to create a hexagram, two trigrams are stacked on top of each other creating six 

lines allowing for 26 = 64 possible combinations of hexagrams. The 64 hexagrams are created 

in 32 pairs of two, with each item in the pair being the reverse of the other. Hexagrams often ap-

pear in circular representations, sometimes combining other concepts such as the five elements. 

In Figure 3, the outer ring represents the 365 days in a year. The next ring represents the 64 hex-

agrams followed by the 13, 28 day months in a year. Finally, two different representations of the 

eight trigrams are displayed. The inner part of the circle represents the five Chinese elements of 

Wood, Earth, Water, Fire, and Metal. 
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Figure 3: 64 Hexagrams of the I Ching (I Ching and the Year, 2012) 

 The Chinese scholar and philosopher Shao Yung created the binary arrangement of hexa-

grams in the 11th century (Mungello, 1971). He displayed them both circularly and horizontally 

in the same order, so it was clear he understood the binary progression. There is, however, little 

evidence that the trigrams and hexagrams were ever used for counting (Mungello, 1971). Many 

other orderings of the hexagrams are present in Chinese history and these representations do not 

follow the binary progression. Despite the intent of the particular hexagram ordering, this binary 

progression proved to be influential later in history. 

Use of I Ching for Divination 

In their translation of the I Ching, Kerson and Rosemary Huang provide a detailed description of 

the use of the I Ching as a divination text (Huang, 1987). The basic idea is to cast a hexagram by 

generating the six lines using a system of rules. Several methods of casting the hexagrams exist 
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with varying probability distributions. Common methods include using yarrow stalks; combina-

tions of two, three, or four coins; or dice. Though using yarrow stalks was the original method, 

the most common is the three coin method due to its simplicity. 

 When casting a hexagram, each line is generated as Yin or Yang and as changing or un-

changing. Two hexagrams are created; the original or present hexagram and the changed or fu-

ture hexagram. There are sixty-four possible hexagrams (26 = 64). Each hexagram can then 

change into sixty-four changed hexagrams. A total of 64 × 64 = 4,096 combinations are possi-

ble within the divination system. Additionally, the hexagrams will be interpreted uniquely by 

each individual they are presented to, so an infinite number of meanings are possible. 

 To cast a hexagram using three coins, the coins are tossed and then the outcome is ob-

served as a combination of three heads, two heads, two tails, or three tales. Old Yang is repre-

sented by the number 9 and Young Yang by the number 7. Additionally, Old Yin is represented 

by the number 6 and Young Yin by the number 8. Figure 4 shows the possible results and the 

corresponding line represented. The coins are tossed a total of six times, with the line resulting 

from each toss written above the previous line. The stacked lines when disregarding the young 

and old represent the original or present hexagram. A changed or future hexagram is created by 

changing all of the Old Yin and Old Yang values to their opposite representation (e.g. Old Yin 

becomes Yang and Old Yang becomes Yin). 

 

Figure 4: Three Coin Method for Casting Hexagrams (How to Consult the I Ching, 2014) 
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 Once the hexagrams have been cast, the values they represent can be referenced within 

the text of the I Ching. The bottom three lines are the lower trigram and the top three lines the 

upper trigram. The I Ching contains a matrix in which the corresponding value of the hexagram 

can be looked up using the two trigrams. An example would be the upper trigram Wind and the 

lower trigram Water, known as Wind Over Water. When referenced in the matrix, this results in 

a hexagram value of fifty-nine which corresponds to the hexagram Flowing. This original hexa-

gram can then be consulted, followed by the changed hexagram resulting from reversing the old 

values.  

A translation of The Wind Over Water hexagram reads as follows (Huang, 1987): 

 The King goes to the temple. 

 Auspicious to cross the great stream. 

 Auspicious omen. 

 
In addition to the text of the hexagram as a whole, further interpretation is provided for each of 

the six lines of the hexagram. Further weight is given to the lines that result in the changed hexa-

gram. It is also important to understand that the reading of the translations of these hexagrams by 

an English reader frequently neglects certain cultural aspects that were obvious and important to 

the ancient Chinese reader. Modern translations often provide a commentary to offer insight as to 

how the hexagrams would have been historically interpreted. In the example of the Wind Over 

Water hexagram, an understanding that “Flowing water, delightful when it is gentle, but menac-

ing when it grows to a torrent, had a special meaning for the ancient Chinese” helps to explain 

the intent of the Flowing hexagram (Huang, 1987). 
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4 Leibniz 

Gottfried Wilhelm Leibniz (1646-1716) is an important figure in the history of mathematics and 

philosophy (Belaval, 2014). Gauss is often considered the last mathematician to know all of 

mathematics; Leibniz has been referred to as the last universalist or “universal genius” with in-

terests and contributions in all areas of European knowledge (Perkins, 2010). Leibniz made con-

tributions in the disciplines of mathematics, physics, philosophy, logic, psychology, theology, 

technology, applied science, economics, medicine, history, and other areas (Perkins, 2010). 

Much of Leibniz’s life was spent trying to align his views on religion and philosophy with his 

findings in math and science.  

Leibniz’s most recognized achievements were his contributions in the area of calculus. 

Leibniz was also a prominent inventor of mechanical calculators, creating the Leibniz wheel that 

was used in mechanical calculators until the invention of electronic calculators in the 1970s. 

Though relatively unacknowledged during his lifetime, Leibniz’s advances in logic and his de-

scription and formulation of the binary number system played an important role in the develop-

ment of computers in the twentieth century. Some consider Leibniz to be one of the most im-

portant figures in the history of computers and the world’s first computer scientist (Dalakov, 

n.d.). Despite Leibniz’s many achievements, he had fallen out of favor by the time of his death 

and his grave remained unmarked for 50 years. 

Characteristica Universalis 

Leibniz was a voluminous writer across many disciplines. A complete collection of the writings 

of Leibniz has yet to be published, but it is projected to have over forty volumes (Perkins, 2010). 

Many of his writings were not published during his lifetime. Leibniz did not write a thorough 

explanation of his philosophical views, so information must be combined from amongst his writ-
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ings. However, common within many of his works is the attempt to establish what he called a 

characteristica universalis or universal characteristic. When writing in French, Leibniz often re-

ferred to the spécieuse générale to represent the same concept. 

Leibniz intended for the universal characteristic to be a formal language that could repre-

sent ideas present in math, science, and other fields. He believed that all of human thought could 

be generalized with a few primitive thoughts and that if these thoughts could be represented as a 

set of characters, those using the characters for reasoning would never error (Peckhaus, 2004). 

The characters would be represented as pictographs and could be easily translated and under-

stood by any individual regardless of language. The general characters representing simple 

thoughts could be combined together to form more complex thoughts.  

Early his career, Leibniz made some efforts in the formation of pictograms that could be 

applied to his characteristica universalis through a method of diagrammatic reasoning. Leibniz 

presented his first pictographs in his 1666 paper De Arte Combinatoria (On the Art of Combina-

tions), which extended his doctoral dissertation in philosophy (Leibniz, Dissertation on the Art of 

Combinations, 1989). Figure 5 shows Leibniz’s representation of Aristotle’s four elements and 

Figure 6 shows his representation of the Aristotelian theory of all things being created from the 

four base elements. These writings came before Leibniz had formal training in math. He revisited 

this material throughout his career, but did not significantly expand his thoughts on these picto-

graphs. 

 

Figure 5: Leibniz's pictographs of the elements of earth, water, air, and fire 
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Figure 6: Leibniz's representation of Aristotelian Theory of creation from base elements 

Leibniz felt that the development of the universal characteristic would be highly benefi-

cial to society. In 1679, Leibniz wrote that: 

Once the characteristic numbers for most concepts have been set up, however, the human 

race will have a new kind of instrument which will increase the power of the mind much 

more than optical lenses strengthen the eyes and which will be as far superior to micro-

scopes or telescopes as reason is superior to sight (Leibniz, On the General 

Characteristic, 1989). 

Leibniz also stated that the distractions of his work in other areas prevented him from completely 

working out the universal characteristic. However, he believed that there were individuals that 

could work out the system in five years’ time (Leibniz, On the General Characteristic, 1989). He 

also stated the task could be completed in two years if only the doctrines of mortality and meta-

physics, which he considered the most useful for life, were worked out. In 1714, Leibniz dis-

cussed his ideas with Marquis de l'Hôpital and others and felt they “paid no more attention to it 
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than if I had told them about a dream of mine.” Leibniz acknowledged the difficulty in creating 

the universal characteristic especially “without the advantage of discussions with men who could 

stimulate and help me in work of this nature” (Leibniz, On the General Characteristic, 1989).  

Calculus Ratiocinator 

Important to the topic of this paper is Leibniz’s thoughts on what he called the calculus ratiocina-

tor. The characteristica universalis has been interpreted in many ways and Leibniz’s true intent 

may never be fully understood. It has been speculated that Leibniz believed that the establish-

ment of the characteristica universalis would allow the mechanical deduction of all truths from 

the thoughts represented within through what he called the calculus ratiocinator (Peckhaus, 

2004). This kind of logical deduction would be a form of calculating machine that would make 

decisions based on inputs from the symbols of the characteristica universalis. It is not clear 

whether Leibniz was thinking of the calculus ratiocinator as a more of a software or hardware 

solution. The calculus ratiocinator is a prequel to mathematical logic or “the algebra of logic” as 

stated by Leibniz that would be developed in the subsequent centuries. 

Leibniz and the I Ching 

According to David Mungello’s article “Leibniz’s Interpretation of Neo-Confucianism,” Leibniz 

expressed an interest in China early in his life (Mungello, 1971). He read many Chinese texts 

including the Confucius Sinarum Philosophus, which was a translated collection of three of the 

four Confucian Four Books. Between the years of 1697 and 1707, Leibniz had a correspondence 

with Joachim Bouvet, a French Jesuit who worked in China. Bouvet was a member of the Fig-

urists, a group who attempted to understand how ancient Chinese rites should be interpreted by 

Christianity. The Figurists believed Fu Xi, whom traditional Chinese beliefs stated that the I 
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Ching had been revealed to, was not Chinese but was rather the “original Lawgiver of all man-

kind” (Mungello, 1971).  

During his correspondence with Bouvet, Leibniz encountered the hexagrams of the I 

Ching previously discussed (Mungello, 1971). Leibniz had expressed in letters to Bouvet some 

of his ideas concerning his system of counting by twos. Bouvet recognized the patterns presented 

and sent images of the hexagrams he had encountered in China. After studying the hexagrams, in 

particular The Former Heaven ordering of the hexagrams, Leibniz felt confirmation that his work 

with binary numbers was important and valid. Fu Xi is thought to have created The Former 

Heaven order of hexagrams. Leibniz hoped that the binary system would aid him in the creation 

of the characteristica universalis, constructing a universal formal language for expressing math, 

science, and other concepts. The discovery of the hexagrams and their relation to his binary 

number system gave him encouragement in this area. 

Leibniz felt that the binary numeral system represented Christianity’s view of creation 

from nothing (Mungello, 1971). The numeral 1 represents God and the numeral 0 represents 

nothing. Leibniz’s interest in China led him to try to find ways to unite the philosophies of east 

and west. His assertion of the relationship between the Chinese hexagrams and his binary system 

was an attempt to forge that connection, despite the fact that the hexagrams served a different 

purpose to the Chinese than he had interpreted. Nonetheless, the connection he drew led him to 

further his studies in the area, continue his correspondences, and write his paper “Explanation of 

Binary Arithmetic.” 

Explanation of Binary Arithmetic 

In 1703, Leibniz published his paper “Explication de l'Arithmétique Binaire”, or “Explanation of 

Binary Arithmetic.” In this paper, Leibniz documents the basics of his binary number system in-



Lande, p. 526 

cluding counting and examples of addition, subtraction, multiplication, and division (Leibniz, 

Explanation of binary arithmetic, 1703). Leibniz also comments on where the binary number 

system is useful. He does not propose replacing the decimal system, but rather suggests some of 

the advantages it offers over the decimal system in use at that time. Leibniz finishes his paper by 

connecting his system with the Chinese hexagrams and explaining how the Chinese had lost the 

intended meaning. Leibniz makes the statement that it has been up to him, a European, to restore 

the lost meaning (even though his interpretation has been found to likely be incorrect) 

(Mungello, 1971). 

Counting 

In his paper, Leibniz discusses that he has used the progression of proceeding by two for 

many years (Leibniz, Explanation of binary arithmetic, 1703). He uses only the characters 0 and 

1, and when he reaches two, he starts again. Figure 7 demonstrates Leibniz’s counting method 

from his published paper, with the far right column representing the decimal equivalent. Leibniz 

has boxed in the number of digits that must be present to represent a number. For example, in 

order to represent numbers 4-7, three digits must be present. He has also included leading zeroes 

on all of the numbers, which he later explains makes it easier to compare against the Chinese 

hexagrams. 
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Figure 7: Leibniz's Method of Counting in Binary (Leibniz, Explanation of binary arithmetic, 1703) 

Leibniz also comments on what he calls the “celebrated property of the geometric pro-

gression by twos” in whole numbers (Leibniz, Explanation of binary arithmetic, 1703). He 

demonstrates that if provided with a binary number from each degree, all of the numbers below 

double the highest degree can be composed from those numbers. In Table 1, this geometric pro-

gression is demonstrated. With the combination of the numbers 1, 2, and 4, all numbers up to one 

less than 2 ∗ 4 = 8 − 1 = 7 can be represented. So, 1, 2, 3, 4, 5, 6, and 7 can be represented by a 

binary number of three digits. Leibniz then mentions that this property would allow “assayers to 

weigh all sorts of masses with few weights and could serve in coinage to give several values with 

few coins” (Leibniz, Explanation of binary arithmetic, 1703). 
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1 0 0 4 

 1 0 2 

  1 1 

1 1 1 7 

Table 1: Geometric progression by twos 

Addition and Subtraction 

 Leibniz next shows examples of how addition and subtraction can be performed using 

binary numbers (Leibniz, Explanation of binary arithmetic, 1703). He only discusses in passing 

these operations, stating that “all these operations are so easy that there would never be any need 

to guess or try out anything” (Leibniz, Explanation of binary arithmetic, 1703). When adding 

binary numbers, the following form holds:  

0 + 0 → 0, 0 + 1 → 1, 1 + 0 → 1, and 1 + 1 → 0.  

In the case of 1 + 1 → 0, an additional 1 will have to be added or carried to the next column. 

Table 2 shows the binary addition table and Table 3 shows the truth table for the logical OR op-

erator (∨). Notice the values are the same with the exception being when both inputs are 1. 

 0 1 

0 0 1 

1 1 10 

Table 2: Binary Addition Table 

 0 1 

0 0 1 

1 1 1 
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Table 3: Truth Table for Logical OR Operator (∨) 

Table 4 shows an example of Leibniz’s demonstration of addition. Addition with binary 

numbers is performed in much the same way as with decimal numbers using the carry method. 

Starting from the right column, 0 + 1 = 1. In the second column, 1 + 1 = 0 and 1 is carried to 

the next column. For the third column, 1 + 1 + 1 = 1 and 1 is carried to the next column. The 

result is 1101, with the decimal equivalent being 13. As an interesting aside, the representation of 

the binary equivalents of 7 and 6 were incorrect in the English translation of Leibniz’s paper, but 

were correct in his original manuscript. Table 5 demonstrates subtraction with binary numbers, 

which is again very similar to subtraction with the decimal system. In order to subtract 1 from 0, 

borrowing from the column to the left is performed. 

 1 1 1 7 

 1 1 0 6 

. .    

1 1 0 1 13 

Table 4: Addition with Binary Numbers 

1 1 0 1 13 

 1 1 1 7 

 1 1 0 6 

Table 5: Subtraction with Binary Numbers 

Multiplication and Division 

 Multiplication is again performed very similarly to multiplication with decimal numbers. 

Multiplication is performed digit-by-digit with the results being added together in the method 
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previously presented. Table 6 shows an example of binary multiplication as demonstrated by 

Leibniz. Table 7 shows the binary multiplication table. The binary multiplication table is identi-

cal to the truth table for the logical AND operator (∧). Much like the other operations, binary di-

vision is similar to decimal division. Table 8 shows Leibniz’s example of binary division, which 

is functionally similar to long division with decimal numbers, just notated in a slightly different 

manner. 

 

  1 1 3 

  1 1 3 

  1 1  

 1 1   

 .    

1 0 0 1 9 

Table 6: Multiplication with Binary Numbers 

 0 1 

0 0 0 

1 0 1 

Table 7: Binary Multiplication Table and Truth Table for the Logical AND Operator (∧) 

15 1 1 1 1 1 0 1 5 

3 1 1 1 1     

  1 1      

Table 8: Division with Binary Numbers 
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Fu Xi and Chinese Trigrams 

At this point in his paper, Leibniz discusses what he calls the “mystery of the lines of an 

ancient King and philosopher named Fuxi” (Leibniz, Explanation of binary arithmetic, 1703). 

Leibniz displays an example of the I Ching trigram he calls the Figure of the Eight Cova (Figure 

8) connected with his number system of counting by twos. Next, Leibniz makes some bold 

statements. He states that the Chinese have lost the meanings of these figures and that he has 

solved the mystery with the aide of Father Bouvet (Leibniz, Explanation of binary arithmetic, 

1703). Leibniz further mentions that the 64 hexagrams align perfectly with his number system 

(Leibniz, Explanation of binary arithmetic, 1703). The paper is concluded with Leibniz’s discus-

sion that there may be even more knowledge to be derived from the Chinese hexagrams if the 

origins of Chinese writing could be discovered. 

 

Figure 8: Figure of the Eight Cova, Binary Numbers, and Decimal Numbers (Leibniz, Explanation of binary 

arithmetic, 1703) 

 Leibniz’s short paper (3-5 pages depending on publication) introducing his binary num-

ber system had a significant impact on the scientific community (Glaser, 1971), but had an even 

greater effect on his own personal thoughts in theology and philosophy. Though not discussed in 

this paper, in letters to Rudolph August, Duke of Brunswick, Leibniz expressed that his system 

of numbers were a suitable analogy to God’s omnipotence. Leibniz states: 
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It might be said that nothing is a better analogy to, or even demonstration of such creation 

than the origin of numbers as here represented, using only unity and zero or nothing. And 

it would be difficult to find a better illustration of this secret in nature or philosophy.  

As was the case with many of his mathematical and scientific studies, Leibniz was trying to tie 

the fields of theology and philosophy to his new discoveries. 

Formal Logic 

In addition to the binary number system, Leibniz made significant advances in the field of formal 

logic, even though his papers were not published during his lifetime. Some would say that he ad-

vanced the field in a way that had not been seen since Aristotle (Bertrand, 1945). In his un-

published papers, Leibniz articulated the modern day properties of conjunction, disjunction, ne-

gation, identity, inclusion, and the empty set. Many of Leibniz’s papers in this area were not pub-

lished until the 20th century, and it is only then that the full extent of his advances was revealed. 

It was not until George Boole and Augustus De Morgan in the nineteenth century that many of 

the same developments were achieved (Bertrand, 1945). Though his discoveries in logic did not 

influence people of his era or those that followed in the subsequent 150 years, it is clear that 

Leibniz was ahead of his time with his thoughts on formal logic. 

Computation 

Leibniz invented a mechanical calculating machine known as the stepped reckoner in 1672, with 

a working model being built in 1694 (Martin, 1925). This machine was the first that could per-

form the operations of addition, subtraction, multiplication, and division. Though the machine 

was sound in design, the complicated and precise nature made it difficult to construct during that 

time in history. Only three of the machines were produced due to the difficulty of construction. 
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Though Leibniz did not use his binary number system in this machine, the systems still became 

influential in later designs of computing machines (Martin, 1925). 

Leibniz’s machine uses a mechanism that became known as the Leibniz wheel (Martin, 

1925). The Leibniz wheel has nine teeth to represent each of the single digit decimal numbers 1-

9. A second gear then meshes with the teeth of the wheel depending on position. The input is set 

using a series of eight knobs and then the operator is set using a dial. By turning a crank, the cal-

culation is performed and the result is displayed on 16 windows on the rear of the machine. The 

design of the wheel inside this machine was later used by inventors of other calculating ma-

chines. Figure 9 shows a sketch of the Leibniz wheel and it functions. 

 

Figure 9: Leibniz Wheel (Dalokov, n.d.) 

Perhaps more important to the history of binary numbers and computers was Leibniz’s 

work on a concept to create a machine that represented binary numbers using marbles governed 

by punch cards. In his work “Progressione Dyadica” (as cited in Bauer, 2010), Leibniz describes 

his machine operating on the binary principle: 

This type of calculation could also be carried out using a machine. The following method 

would certainly be very easy and without effort: a container should be provided with 
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holes in such a way that they can be opened and closed. They are to be open at those po-

sitions that correspond to a 1 and closed at those positions that correspond to a 0. The 

open gates permit small cubes or marbles to fall through into a channel; the closed gates 

permit nothing to fall through. They are moved and displaced from column to column as 

called for by the multiplication. The channels should represent the columns, and no ball 

should be able to get from one channel to another except when the machine is put into 

motion. Then all the marbles run into the next channel, and whenever one falls into an 

open hole it is removed. Because it can be arranged that two always come out together, 

and otherwise they should not come out. 

Though this machine was never created by Leibniz, his description describes precisely how elec-

tronic computers function. Gravity and movement of marbles are replaced by electrical circuits, 

but the principle functions in the same way. 

 Figure 10 shows a modern binary addition machine built in a manner similar to that de-

scribed by Leibniz. To perform addition, the first number is loaded into the machine by placing 

marbles through the holes in the top for each place represented. For example, to load the number 

one, a marble would be placed through the 1 hole. This would place the rocker in that position to 

be toggled to the right, still holding the marble. When the rockers are rocked to the left, they rep-

resent zero and when they are rocked to the right they represent one. If another marble was 

dropped into the 1 hole, the rocker would be tipped to the left, releasing the first marble from the 

machine and transferring the second marble to the 2 position representing 1+1=2. Adding one 

more marble into the 1 hole would result in marbles in the 1 and 2 positions with those rockers to 

the right representing 1+1+1=3 or the binary representation 11 due to the 1 and 2 rockers being 

in the right position. More advanced addition can be performed by loading marbles and then 
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viewing the state of the machine at the end of the operation. A video demonstrating the use of 

this machine is available at https://www.youtube.com/watch?v=GcDshWmhF4A. 

 

Figure 10: Binary Addition Machine (Wandel) 

To perform the addition of 7 + 6, marbles would be initially loaded into the 1, 2, and 4 

positions for the binary representation of 7 as111. Table 9 shows the state of the machine after 

loading the number 7. To add 6, marbles would be dropped through the 2 and 4 holes, corre-

sponding to the binary representation 110. When the marbles are placed through these holes, the 

original marble in the 2 position will drop out of the machine, the new 2 marble will carry to the 

4 position releasing the original 4 marble. This marble will then carry to the 8 position. The mar-

ble that was dropped into the 4 hole will remain in the 4 position resulting in marbles in the 8, 4, 

and 1 positions representing 13 in binary as 1101. Table 10 shows the state of the machine at this 

point. Further additions can be performed by dropping more marbles through the holes.   

 

https://www.youtube.com/watch?v=GcDshWmhF4A
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32 16 8 4 2 1 
     O 
    O  
   O   
      
      
      

Table 9: Binary Addition Machine Representing 7 

32 16 8 4 2 1 
     O 
      
   O   
  O    
      
      

Table 10: Binary Addition Machine Representing 13 

5 Later Developments in Mathematical Logic 

Few major advances in the area of the binary system and mathematical logic occurred in the 125 

years following Leibniz’s death until the development of a system of symbolic logic by George 

Boole in the middle of the nineteenth century (Boole, 1854). Boole’s book, An Investigation of 

the Law of Thought introduced his form of algebraic logic, a system of algebra based on the truth 

values true and false (1 and 0) and the conjunction (AND), disjunction (OR), and negation 

(NOT) operators. This symbolic system was eventually given Boole’s name and is now referred 

to as Boolean algebra.  

Another important individual in the development of formal logic was Augustus De Mor-

gan. He published his book Formal Logic: Or, The Calculus of Inference, Necessary and Proba-

ble in 1847 (De Morgan, 1847). This book introduced De Morgan’s early thoughts on logic. In 

later publications, De Morgan presented a series of transformation rules that later became known 
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as De Morgan’s Laws. Many of the ideas presented by Boole and De Morgan had been previous-

ly proposed by Leibniz but were not published until late in the nineteenth century. 

In the early twentieth century, Claude Shannon proved that binary arithmetic combined 

with Boolean algebra could be applied to electrical relays. His Master’s thesis in 1937 essentially 

founded digital circuitry design and ushered in the era of the modern-day computer (Shannon, 

1936). As previously discussed, Leibniz proposed a mechanical calculator over 200 years earlier 

that functioned using the same basic ideas for calculation. Though many of these connections 

were not drawn until a later time, a clear path from Leibniz to Boole and De Morgan to Shannon 

is easily apparent in retrospect. 

6 Conclusion 

It is clear to this author that Leibniz’s contributions of the formalization of the binary number 

system, his unpublished writings on formal logic, and his work on calculating machines justify 

giving him the title as the world’s first computer scientist. His work was clearly ahead of his 

time; many of his findings were not furthered or rediscovered for the next 150-230 years. The 

framework that Leibniz laid provided the impetus for the advances that eventually lead to the 

invention of the digital computer. Some of his work in this area may have gone unrecognized 

during his time, but as hindsight has shown, his place in the history of computer science is hard 

to discount. 
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